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Propagauon in a Wavegmde Partially Filled
with Anisotropic Dielectric Material

JAN L. H. ASKNE, MEMBER, IEEE, ERIK L. KOLLBERG, AND LARS PETTERSSON, MEMBER, IEEE

Abstract —A rectangular waveguide partially filled with an anisotropic
dielectric material has been studied. The method of analysis has been
shown to be quite powerful. A new configuration with a rectangular
waveguide unsymmetrically loaded with a rectangular dielectric insert has
been analyzed and tested experimentally. The special effects of mode
coupling by breaking the symmetry of the structure are studied and the
consequences for single-mode operation with application to masers in the
millimeter-wave region are demonstrated.

- I. INTRODUCTION

URING RECENT years considerable interest has been

focused on dielectric waveguides. The development of
theories and numerical methods has been stimulated by the
potential use of dielectric waveguides for integrated circuits
in the millimeter-wave frequency region up to optical fre-
quencies.

In this paper we will discuss and analyze wave propaga-
tion in rectangular waveguides loaded with a rectangular
dielectric insert of high dielectric constant (Fig. 1). The
present interest in this problem arose in connection with
the realization of maser amplifiers for the frequency range
20-40 GHz [1]. The maser crystal (iron-doped TiO,),
which in the present design study is identical with the
dielectric loading in Fig. 1, has a very high and anisotropic
dielectric constant, €, is 170 along the x-axis and 85 along
the y- and z-axes. The image line (Fig. 1(b)) has earlier
been studied in, for example [1], and the symmetrically
loaded waveguide (Fig. 1(d)) has been studied in [2] and
[3]. In the present paper we will consider changes in the
dispersion relation when we gradually change the config-
uration from one to the other (Fig. 1(c)). ‘

II. METHOD OF ANALYSIS

For dielectrically loaded waveguides of the type shown
in Fig. 1, the field patterns of the modes of propagation
cannot be described using analytical expressions in closed
form. However, there are several algorithms available for
solving eigenvalue and deterministic problems, which may
be applied to more general types of waveguides such as the
one treated in this paper. It is, however, by no means
obvious which method is the most suitable when the dielec-
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Fig. 1. Tlustrating waveguides with dielectric insert. (a) Cross-sectional
parameters. (b) Image liné. (¢) Unsymmetrically loaded. (d) Symmetri-
cally loaded.

tric insert of the waveguides in Fig. 1 has a large dielectric

-constant.

The method used by Lewin et al. [3] is accurate both for
evaluation of the w-k diagram and the field configuration.
It is a mode-matching method similar to the least squares
residual boundary method proposed by Davies [4], and
requires some iteration procedure to find the minimum of
the least square residual of the tangential field difference at
the boundaries which may be rather costly. Schlosser and
Unger [5] used a variational method, also fairly elaborate
mathematically, which is somewhat limited concerning its
accuracy since only two terms in the series expansion are
used. Laloux et al. [2] expressed the differential equations
by discretization. They used a variation-iteration method
to solve the eigenvalue equations and applied the method
on a waveguide loaded by an isotropic and lossy dielectric
insert. .

In this paper we will use an analysis which is based on
the Galerkin method for analyzing nonideal waveguides
discussed by Schelkunoff [6] and Johnson [7]. It can be
shown that the final formulas are almost identical to-those
obtained from the method described by Ogusu [8]. The
method yields a quite accurate w-k diagram (the field
pattern obtained is less accurate) with a moderate number
of terms in the field expansions. This is so because the
series are integrated, a procedure known to improve the
convergence of slowly convergent series. The method is
also mathematically fairly simple, as far as computing time
is concerned and can easily be adopted to cases where the
dielectric insert is anisotropic and offset from the center of
the waveguide.

Since the method is rather closely related to the methods
discussed in {6]-[8] for the isotropic case, we will here only
point out the more essential steps in the derivation of the
final formulas. The actual field is expanded in terms of the

“normalized and orthogonal field- or basis-functions E, and
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H,. These functions have the same dependence on the
transverse coordinates x and y as the normal modes of an
empty waveguide, i.e., in this case the TE- and TM-modes
of an empty rectangular waveguide. Hence

E(x,y,2)= Z[0(2)En(x, )+ 4,(2) E.(x, )]

(1)
ﬁ(x> y’z)ZE[in(z fzn(xa y)](z)

Here E,,, H, and E_,, H,, denote the transverse and
longitudinal part of E, and H,, respectively. The pertuba-
tion of the empty waveguide caused by the dielectric insert
is taken into account by the expansion coefficients v,, ¢,
i,, and p,. These coefficients can be related to the real
fields E and H by using the orthogonality properties. Since
we have an inhomogeneous waveguide cross section, it is

convenient to express the Maxwell equation as

)E

VH,(x, 7)+ p.(2)

(3)

where €, is the anisotropic dielectric constant matrix, being
diagonal in our case. Using Maxwell’s equations and the
two dimensional Green’s theorem we obtain, assuming
perfectly conductive metal walls

v X H= jwe,E + jwey(E, —

=0, TE (4)
k2 _
i =q,+ 20 / ~1)-EdS, T™ ()
V‘O‘Yn
3i
alz ]weo(u an [p"}+/E,n —1)-EdS
¢}
TE
{TM} (6)

3 _ . [ w0 TE

az _J“’“O(’"—fi{qn})’ {TM} )
0

The expressions are different if the basis function, denoted

n,is a TE- or a TM-mode. v, is the transverse wavenumber

for mode n. For the rectangular waveguide in Fig. 1, we

have

(8)

where i and j are the integers associated with basis function
n. Furthermore, we have k2 = w’,u, and S denotes the
cross-sectional area of the dielectric insert. In fact, the
integral over the dielectric insert represents the coupling
between the modes of the empty waveguide. Assuming a
z-dependence of e 7/*:* and inserting (1) and (2) into (4)—(7)
yield equations linear in v,, ¢q,, i,, and p,. We get the
following matrix equations:

[pl=[v]. TE )
[[]=X[q]. T™ (10)
k,[i]=Y[v] (11)
k. [v]=Z[i] (12)
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where [v], [¢], [1], and [ p] are vectors of v,, q,,, i,,, and p,,
X, Y, and Z matrix with the following elements:

X, = 7 sz (¢(x.y)—1)E,,dS, TM
(13)
2
Y [ 1
Y, weO[S 1 kS{O})
— TE
+ [ E*-(¢(x.y)—1)-E,,dS {}
fs (&(x.7)=1) ™
(14)
0
TE
Zn — Wlg 6nm Y_” =1 s { }
kg( )um ™
(15)

The integrations are performed over the cross section. E,,,
etc. are the fields of the empty waveguide, and €,(x, y) is
the (diagonal) dielectric constant tensor. With a rectangu-
lar rod in a rectangular waveguide the integrals can be
determined analytically.

From (11) and (12) we obtain the elgenvalue equation

ZY[v]=k?*[v]. (16)

From (14)—(16) k? and v, can be determined. The coeffi-
cients v,, ¢,, i,, and p, can be determined from the
(9)-(12) for the TE- and TM-modes.

II1.

We have tested our method by comparing with the exact
method [9] for the lowest LSE-mode in a dielectric slab
loaded waveguide in the same way as the variation-itera-
tion method [10] was tested. We obtain perfect agreement.
We also tested higher order LSE- and LSM-modes by
comparing with the exact method. We conclude that for
the three lowest order modes we obtained perfect agree-
ment, while for the next four modes there was a difference
in Af/f equal to 1, 1, 4, and 6 percent (a=1, b=0.1,
¢=025d=0.1,e=1,f=0.1, ¢, =16, 2X 122 modes were
used, i.e., m and n varies between 0 and 11 for TE,, , and
between 1 and 12 for TM,, , modes). ’

The dielectric image line was treated with a least-
square-residual mode matching method in [3] and com-
pared with the Rayleigh—Ritz variational method used in
[5]. The same geometry was used to test the present mode
coupling method with 2X10? modes (see Fig. 2). The
agreement is quite good between the methods and the
experimental results given in [5].

For dielectric rod waveguides, Fig. 1(d), Laloux ef al. [2]
and Lewin er al. [3] have presented numerical results for
two different configurations. The corresponding results
from our method do not agree particularly well with [2].
For the Jowest mode the difference Af/f is 18 percent
while the higher modes agree somewhat better. The results
in [3] agree quite well with results from the present method.

NUMERICAL ANALYSIS



ASKNE e¢f al.: PROPAGATION IN A WAVEGUIDE

797

k;

03 04 [mm-']
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Fig. 3. Dispersion diagrams (frequency as function of propagation constant). €, =170, ¢ =85. a=1.30, b=1.60,

¢=0.55,d=0382, and e=

Fig. 3 demonstrates results of computer calculations on a
typical configuration with rutile (e,, =170, €,, = 85),
using 2 X 102 modes. Tests have shown that 1 1ncreasmg the
number of modes further yields only a negligible change in
the result for the dominating mode.

In order to discuss the changes in the dispersion diagram
and the coupling between various modes, it is useful to first
discuss the modes of the symmetrical case when e = g and
f="b. The symmetry group of the structure is then C,,, [12],
and there are four nondegenerate mode classes correspond-

1.30 mm. (a) f= 082mm(b)f—100mm(c)f~120mm(d)f—yl40mm(e)fw160mm

ing to cases when the (x, (b/2),z) plane and ((a/2),
¥, z) plane are either electric (conductive) walls (E,, = 0)
or magnetic walls (B,,, = 0). The four modes are classified
as shown in Table I, where suffix o and e denotes the
symmetry of the E, -field versus x = a /2. The classification
follows the nomenclature of Schlosser—Unger [5], and the
field configurations of the four lowest order modes are
illustrated in Fig. 4.

The asymptotic behavior of modes 1 and 2 is &, /w- ¢,
~ ‘/e/v and f€_, respectively. The ,EH-mode, which has a
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Fig. 4. Field configuration of the four lowest order fields. E-field is
marked by solid lines, H-field by broken lines.

TABLE I .
TABLE OVER VANISHING FIELD COMPONENTS FOR THE
DIFFERENT MODES IN THE SYMMETRY PLANES

modes

plane 2; EH 3; HE 43 JHE

3 2 o H E_H
Hx l-,y HZ FXH E x By g

H E E E_H H
Xy 2z x 'y 2

backward wave region is the mode of interest in the maser
application, where a low group velocity and a large con-
centration of the RF magnetic field to the inside of the
crystal is wanted. For the ;EH-mode, these desired proper-
ties are particularly valid for such k-values where only one
forward wave can exist. In the same frequency region
another mode also exists which partially resembles the
TEM-mode of a coaxial line, the ,HE-mode. Small irregu-
larities in the structure will cause energy transfer (coupling)
between these two modes. In a maser amplifier where an
isolator is used for avoiding oscillations, this will cause
problems since the ,HE-mode only weakly interacts with
the isolator. Consequently, for the symmetric case we may
in practice obtain unwanted oscillations in the maser
amplifier. On the other hand, we can use the fact that these
two modes have the same symmetry in the x-direction. By
displacing the crystal in the y-direction the modes with the
same symmetry in the x-direction will couple strongly to
each other when their phase velocities are the same.
According to Fig. 3, this happens in an area where one of
the modes has a backward wave region. Then the coupled
modes have energy flow in opposite directions while the
stored energy is positive. This means (see e.g., [11]) that the
coupling will result in a region with a complex propagation
constant k& and thus neither the unwanted part of the
,EH-mode nor the jHE-mode will propagate. Computer
results demonstrate this effect nicely. Fig. 3(d) shows the
case of weak coupling and in Fig. 3(c) and (b) the coupling
gets stronger. In Fig. 3(a) we have the image line case. The
symmetry of this structure is C,, [12], and there are now
two nondegenerate mode classes. We conclude that the
structure with the largest single-mode bandwidth is the
structure illustrated in Fig. 3(b). With a high dielectric
constant value the electric fields predominantly penetrate
the dielectric surface perpendicularly and there is a strong
discontinuity in the electric field. If also the distance
between the waveguide wall and the dielectric insert
becomes small, it is realized that a large number of the
chosen basis functions become necessary to describe the
fields accurately.
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Fig. 5. Experimental results demonstrating insertion loss (left-hand part)
and corresponding experimental dispersion diagram ( - - - ) of structure
(right-hand part). Numerical results from Fig. 3(c) marked by — and
Fig. 3(e) marked by ---- are included in right-hand part of figure.

We may conclude that the present method using 2 X 102
modes yields at least as accurate results as the methods
mentioned above [3], [5]. Moreover, the present method is
quite handy for analyzing more complicated (e.g., nonsym-
metric) cross sections, and the computational costs are
relatively low. The computation time on the central unit of
an IBM 3033 N (4 MIPS) is 15 s for 2X 102 modes and 40
s for 2X 122 for the cases in Fig. 3.

1V.. EXPERIMENTAL RESULTS

Experimental dispersion diagrams have been obtained
for some structures. A rutile crystal with the dimensions
¢=0.55 mm, d=0.82 mm, and a length of 67 mm was
used in a waveguide ¢ =1.30 mm and »=1.60 mm. The
smallest value for f, 0.88 mm, was obtained with a 0.03-
mm-thick sheet of teflon (¢, =2) between the waveguide
wall and the crystal. The transmitted signal was attenuated
according to the left-hand part of Fig. 5. The interference
between the forward and reflected waves due to the length
of the crystal was used to determine the dispersion dia-
gram, as a dotted curve in the right-hand part of Fig. 5.
Included in the dispersion diagram are the numerical re-
sults obtained with 2>X10? modes calculated for f=1.2
mm when the teflon sheet is neglected. We obtain excellent
agreement between the numerical analysis and the disper-
sion diagrams for high frequencies while for low frequen-
cies, when the field is no longer concentrated inside the
crystal, there is agreement only in the overall variation. In
this region it is particularly important that the number of
modes used in the computations is increased. However,
taking into account the high value of the dielectric constant
and the omission of the sheet of teflon in the calculation,
the computational method is quite good.

V. SuUMMARY AND CONCLUSION

By displacing a crystal inserted in a rectangular wave-
guide from the symmetrical position we have obtained a
structure with interesting wave propagation properties such
as a backward wave mode, as well as a region with complex
propagation constant. With this type of structure one can
avoid the problem of oscillations in a maser amplifier
associated with the interaction between the backward wave
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and the coaxial type of wave in the symmetrical case. We
have, furthermore, obtained a single-mode structure with a
high slowing factor and a low insertion loss compared to
the image line structure where the crystal has to be soldered
to the waveguide wall. The structure has been used success-
fully for a maser amplifier at 30 GHz [13], and the possibil-
ity to avoid oscillation problems may be of great value for
construction of masers at even higher frequencies [14].
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