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Propagation in a Waveguide Partially Filled,,
with Anisotropic Dielectric Material

JAN I. H. ASKNE, MEMBER, IEEE, ERIK L. KOLLBERG, AND LARS PETTERSSON, MEMBER, IEEE

,4bs~racf —A rectangular waveguide partially filled with an anisotropic

dielectric material has been studied. The method of analysis has been

shown to be quite powerful. A new configuration with a rectangular

waveguide unsymmetrically loaded with a rectangular dielectric iusert has

been an?dyzed and tested experimentally. Tbe speciaf effects of mode

coupling by breaking the symmetry of the structure are studied and the

consequences for single-mode operation with application to masers in the

millimeter-wave region are demonstrated.

I. INTRODUCTION

D URING RECENT years considerable interest has been

focused on dielectric waveguides. The development of

theories and numerical methods has been stimulated by the

potential use of dielectric waveguides for integrated circuits

in the millimeter-wave frequency region up to optical fre-

quencies.

In this paper we will discuss and analyze wave propaga-

tion in rectangular waveguides loaded with a rectangular

dielectric insert of high dielectric constant (Fig. 1). The

present interest in this problem arose in connection with

the realization of maser amplifiers for the frequency range

20–40 GHz [1]. The maser crystal (iron-doped Ti02),

which in the present design study is identical with the

dielectric loading in Fig. 1, has a very high and anisotropic

dielectric constant, Cr is 170 along the x-axis and 85 along

the y- and z-axes. The image line (Fig. l(b)) has ‘earlier

been studied in, for example [1], and the symmetrically

loaded waveguide (Fig. l(d)) has been studied in [2] and

[3]. In the present paper we will consider changes in the
dispersion relation when we gradually change the config-

uration from one to the other (Fig. l(c)).

II. METHOD OF ANALYSIS

For dielectrically loaded waveguides of the type shown

in Fig. 1, the field patterns .of the modes of propagation

cannot be described using analytical expressions in closed

form. However, there are several algorithms available for

solving eigenvalue and deterministic problems, which may

be applied to more general types of waveguides such as the

one treated in this paper. It is, however, by no means

obvious which method is the most suitable when the dielec-
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Fig. 1. Illustrating waveguides with dielectric insert. (a) Cross-sectionaf
parameters. (b) Image line. (c) Unsymmetrically loaded. (d) Symmetri-
cally loaded.

tric insert of the waveguides in Fig. 1 has a large dielectric

constant.

The method used by Lewin et al. [3] is accurate both for

evaluation of the Q-k diagram and the field configuration.

It is a mode-matching method similar to the least squares

residual boundary method proposed by Davies [4], and

requires some iteration procedure to find the minimum of

the least square residual of the tangential field difference at

the boundaries which may be rather costly. Schlosser and

Unger [5] used a variational method, also fairly elaborate

mathematically, which is somewhat limited concerning its

accuracy since only two terms in the series expansion are

used. Laloux et al. [2] expressed the differential equations

by discretization. They used a variation-iteration method

to solve the eigenvalue equations and applied the method

on a waveguide loaded by an isotropic and Iossy dielectric

insert.

In this paper we will use an analysis which is based on

the Galerkin method for analyzing nonideal waveguides

discussed by Schelkunoff [6] and Johnson [7]. It can be

shown that the final formulas are almost identical to those

obtained from the method described by Ogusu [8]. The

method yields a quite accurate ~-k diagram (the field

pattern obtained is less accurate) with a moderate number

of terms in the field expansions. This is so because the

series are integrated, a procedure known to improve the

convergence of slowly convergent series. The method is

also mathematically fairly simple, as far as computing time

is concerned and can easily be adopted to cases where the

dielectric insert is anisotropic and offset from the center of

the waveguide.

Since the method is rather closely related to-the methods

discussed in [6]-[8] for the isotropic case, we will here only

point out the more essential steps in the derivation of the

final formulas. The actual field is expanded in terms of the

normalized and orthogonal field- or basis-functions ~. and
e
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~~. These functions have the same dependence on the

transverse coordinatesx andy as the normal modes of an

empty waveguide, i.e., in this case the TE- and TM-modes

of an empty rectangular waveguide. Hence

E(x, y,z)= ~ [t+(z) ~n(x, y)+qn(z)E,n(x, y)]
n

(1)

Ii(x, y, z) = ~ [in(z) fi,n(x, y)+pn(z)Hzn(x, y)].(2)
n

Here ~,., ~,. and ~z., ~Z& denote the transverse and

longitudinal part of En and H., respectively. The perturb-

ation of the empty waveguide caused by the dielectric insert

is taken into account by the expansion coefficients v., qn,

in, and pn. These coefficients can be related to the real

fields ~ and ~ by using the orthogonality properties. Since

we have an inhomogeneous waveguide cross section, it is

convenient to express the Maxwell equation as

v x i7=j6XoE+ j@60(:r–l)E (3)

where:, is the anisotropic dielectric constant matrix, being

diagonal in our case. Using Maxwell’s equations and the

two dimensional Green’s theorem we obtain, assuming

perfectly conductive metal walls

Pn=vn> T’E (4)

The expressions are different if the basis function, denoted

n, is a TE- or a TM-mode. y~ is the transverse wavenumber

for mode n. For the rectangular waveguide in Fig. 1, we

have

(8)

where i and j are the integers associated with basis function

n. Furthermore, we have k; = U2COp~ and S denotes the

cross-sectional area of the dielectric insert. In fact, the

integral over the dielectric insert represents the coupling

between the modes of the empty waveguide. Assuming a

z-dependence of e-Jkz’ and inserting(1) and (2) into (4)–(7)

yield equations linear in v., q., i., and pn. We get the

following matrix equations:

[p]=[o], TE (9)

[i] =X[q], TM (lo)

kz[i] =P[o] (11)

k,[o]=~[i] (12)

where [o], [q], [i], and [p] are vectors of o., q., in, andpn,

~, ~, and 2 matrix with the following elements:

Xnm=tinm+ ‘;~p:n(:r(xjY)-l)E.~s!

~nm=@(o[8nm(l:&)

/
I

+ E:. (:r(x, y)–l). EtmdS ,
s

r ( o 11

TM

(13)

{)

TE
TM

(14)

(15)

The integrations are performed over the cross section. Et.,

etc. are the fields of the empty waveguide, and {,(x, y) is

the (diagonal) dielectric constant tensor. With a rectangu-

lar rod in a rectangular waveguide the integrals can be

determined analytically.

From (11) and (12) we obtain the eigenvalue equation

Zi[o] =k:[o]. (16)

From ( 14)–( 16) k: and o. can be determined. The coeffi-

cients O., qn, i., and p. can be determined from the

(9)-(12) for the TE- and TM-modes.

III. NUMERICAL ANALYSIS

We have tested our method by comparing with the exact

method [9] for the lowest LSE-mode in a dielectric slab

loaded waveguide in the same way as the variation-itera-

tion method [10] was tested. We obtain perfect agreement.

We also tested higher order LSE- and LSM-modes by

comparing with the exact method. We conclude that for

the three lowest order modes we obtained perfect agree-

ment, while for the next four modes there was a difference

in A~/~ equal to 1, 1, 4, and 6 percent (a=l, b= O.1,
~= ().25, d=o.1, e=l, ~= ().1, (,=16, 2X122 modes were

used, i.e., m and n varies between O and 11 for TE~ ~ and

between 1 and 12 for TMn, ~ modes).

The dielectric image line was treated with a least-

square-residual mode matching method in [3] and com-

pared with the Rayleigh–Ritz variational method used in

[5]. The same geometry was used to test the present mode

coupling method with 2 X 102 modes (see Fig. 2). The

agreement is quite good between the methods and the

experimental results given in [5].

For dielectric rod waveguides, Fig. l(d), Laloux et al. [2]
and Lewin et al. [3] have presented numerical results for

two different configurations. The corresponding results

from our method do not agree particularly well with [2].

For the lowest mode the difference A f/f is 18 percent

while the higher modes agree somewhat better. The results

in [3] agree quite well with results from the present method.
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Fig. 2. Comparison between dispersion relation calculated with differ-
ent methods: —Schlosser–Unger [5]; . Lewin [4]; and xxx this
paper. a = 10.16, b== 6.00, c= 5.00, d= 4.00, e = 10. I6, and ~= 4.00
mm. 6,= 15.
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Fig. 3. Dispersion diagrams (frequency as function of propagation constant). (,x =170, C,Y=C,Z =85. a=l.30, b=l.60,
c= 0.55, d= 0.82, and e = 1.30 mm. (a)f= 0.82 mm (b)f= 1.00 mm (c)f= 1.20 mm (d)/= 1.40 mm (c)f= 1.60 mm.

Fig. 3 demonstrates results of computer calculations on a

typical configuration with rutile (6,X= 170, ~,Y = (7Z= 85),

using 2 X 102 modes. Tests have shown that increasing the
number of modes further yields only a negligible change in

the result for the dominating mode.

In order to discuss the changes in the dispersion diagram

and the coupling between various modes, it is useful to first

discuss the modes of the symmetrical case when e = a and

~= b. The symmetry group of the structure is then C20 [12],

and there are four nondegenerate mode classes correspond-

ing to cases when the (x, (b/2), z) plane and ((a/2),

y, z) plane are either electric (conductive) walls (E,,n = O)

or magnetic walls (lltm = O). The four modes are classified
as shown in Table I, where suffix o and e denotes the

symmetry of the EX-field versus x = a/2. The classification

follows the nomenclature of Schlosser-Unger [5], and the

field configurations of the four lowest order modes are

illustrated in Fig. 4.

The asymptotic behavior of modes 1 and 2 is k, /u. co

=fi and F, respectively. The ~EH-mode, which has a
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MODE 1 MOOE 2 MODE 3 MODE 4

Fig. 4. Field configuration of the four lowest order fields. E-field is
marked by solid lines, H-field by broken lines.

TABLE I
TABLE OVERVANISHING FIELD COMPONENTSFORTHE

DIFFERENTMODESIN THE SYMMETRYPLANES

(mod.,

plan. 1 ; “m 2 ; E]] 3; HE
,,

4; HE
e “

(%; ,.) k.HE H, F.y H EHE
.Y.

)lEH
z .Yz ~Yz

backward wave region is the mode of interest in the maser

application, where a low group velocity and a large con-

centration of the RF magnetic field to the inside of the

crystal is wanted. For the ~EH-mode, these desired proper-

ties are particularly valid for such k-values where only one

forward wave can exist. In the same frequency region

another mode also exists which partially resembles the

TEM-mode of a coaxial line, the ~HE-mode. Small irregu-

larities in the structure will cause energy transfer (coupling)

between these two modes. In a maser amplifier where an

isolator is used for avoiding oscillations, this will cause

problems since the ~HE-mode only weakly interacts with

the isolator. Consequently, for the symmetric case we may

in practice obtain unwanted oscillations in the maser

amplifier. On the other hand, we can use the fact that these

two modes have the same symmetry in the x-direction. By

displacing the crystal in they-direction the modes with the

same symmetry in the x-direction will couple strongly to

each other when their phase velocities are the same.

According to Fig. 3, this happens in an area where one of

the modes has a backward wave region. Then the coupled

modes have energy flow in opposite directions while the

stored energy is positive. This means (see e.g., [11]) that the

coupling will result in a region with a complex propagation

constant k and thus neither the unwanted part of the

~EH-mode nor the ~HE-mode will propagate. Computer

results demonstrate this effect nicely. Fig. 3(d) shows the

case of weak coupling and in Fig. 3(c) and (b) the coupling

gets stronger. In Fig. 3(a) we have the image line case. The

symmetry of this structure is Cl” [12], and there are now

two nondegenerate mode classes. We conclude that the

structure with the largest single-mode bandwidth is the

structure illustrated in Fig. 3(b). With a high dielectric

constant value the electric fields predominantly’ penetrate

the dielectric surface perpendicularly and there is a strong

discontinuity in the electric field. If also the distance

between the waveguide wall and the dielectric insert

becomes small, it is realized that a large number of the

chosen basis functions become necessary to describe the

fields accurately.

dBO-10-20-30-40’0 1 2 3 4 5 6 [mm-,1

Fig. 5. Experimental results demonstrating insertion loss (left-hand part)
and corresponding experimental dispersion diagram ( . . ) of structure
(right-hand part). Numerical results from Fig. 3(c) marked by — and
Fig. 3(e) marked by ---- are included in right-hand part of figure.

We may conclude that the present method using 2X 102

modes yields at least as accurate results as the methods

mentioned above [3], [5]. Moreover, the present method is

quite handy for analyzing more complicated (e.g., nonsym-

metric) cross sections, and the computational costs are

relatively low. The computation time on the central unit of

an IBM 3033 N (4 MIPS) is 15 s for 2 X 102 modes and 40

s for 2 X 122 for the cases in Fig. 3.

IV. EXPERIMENTAL RESULTS

Experimental dispersion diagrams have been obtained

for some structures. A rutile crystal with the dimensions

c = 0.55 mm, d = 0.82 mm, and a length of 67 mm was

used in a waveguide a = 1.30 mm and b = 1.60 mm. The

smallest value for ~, 0.88 mm, was obtained with a 0.03-

mm-thick sheet of teflon (c, = 2) between the waveguide

wall and the crystal. The transmitted signal was attenuated

according to the left-hand part of Fig. 5. The interference

between the forward and reflected waves due to the length

of the crystal was used to determine the dispersion dia-

gram, as a dotted curve in the right-hand part of Fig. 5,

Included in the dispersion diagram are the numerical re-

sults obtained with 2 X 102 modes calculated for ~= 1.2

mm when the teflon sheet is neglected. We obtain excellent

agreement between the numerical analysis and the disper-

sion diagrams for high frequencies while for low frequen-

cies, when the field is no longer concentrated inside the

crystal, there is agreement only in the overall variation. In

this region it is particularly important that the number of
modes used in the computations is increased. However,

taking into account the high value of the dielectric constant

and the omission of the sheet of teflon in the calculation,

the computational method is quite good.

V. SUMMARY AND CONCLUSION

By displacing a crystal inserted in a rectangular wave-

guide from the symmetrical position we have obtained a

structure with interesting wave propagation properties such

as a backward wave mode, as well as a region with complex

propagation constant. With this type of structure one can

avoid the problem of oscillations in a maser amplifier

associated with the interaction between the backward wave
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and the coaxial type of wave in the symmetrical case. We

have, furthermore, obtained a single-mode structure with a

high slowing factor and a low insertion loss compared to

the image line structure where the crystal has to be soldered

to the waveguide wall. The structure has been used success-

fully for a maser amplifier at 30 GHz [ 13], and the possibil-

ity to avoid oscillation problems may be of great value for

construction, of masers at even higher frequencies [14].
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